Plans for anchoring

The need.

Once we start cruising our plan is to spend the vast majority of time at anchor when we are not sailing.

Partly this is to save money 🙂 For example, the nearest marinas to us at Conwy currently cost about £35 a night or £215 a week. A visitors mooring is £18.50 per night. Paying those prices would soon add up to very large part of our budget.

However, more than just the money is the experience. We much prefer being at anchor in a quiet river or bay than being tied up in a marina (good examples we have visited before in Cornwall would include the River Yealm and the River Fal as well as bays such as Studland).

So a lot of what we are planning is to give us the maximum freedom to be at anchor as much as possible. By being fossil fuel free we won’t need to go to marinas or harbours for fuel or energy. By having a watermaker we won’t need to go there to fill up with water. By fitting a high quality 4G antenna (up high) we will improve the mobile signal to give good Internet access more of the time, without needing to go somewhere for WiFi. As public WiFi becomes more common we can also fit a long range antenna for that too.

So for shopping, getting rid of rubbish and leisure we don’t need to be in a marina or harbour, we can use the dinghy. Probably the main use of marinas will be when we want to leave the boat unattended for family visits or whatever.

Knowing that we want to be anchored a lot of the time is one thing. However, there are very different challenges for this depending on where you are in the world (and very different costs).

In the UK the key challenge with anchoring is that much of the coastline (particularly the South Coast) is very crowded with many rivers full of marinas or moorings. This reduces the availability of places left to anchor. So often you need to anchor in a more exposed anchorage where you might need to move depending on the weather (particularly wind direction) as there are few available places sheltered enough from all directions.

In other places (like the Bahamas) there are millions of places to anchor (although again you will need to move around due to wind or swell). Other places have fewer places to anchor and more marinas (eg some parts of the Mediterranean).

What we need, therefore, is a high reliability, easy to use anchoring setup that we can trust and which enables us to easily move between anchorages then anchoring becomes the default, obvious, no-brainer choice..

That means, as with many areas, we are making plans that are significantly different to where Vida is at the moment and different to many of the boats that you typically see when walking around a harbour or marina – there you often see yachts with anchors that are tiny and very rarely used.

The challenge

Our requirements are quite different to what was the norm when Vida was built in the 1976/77. Then anchors were normally lifted on deck and stored in an anchor locker. That wasn’t too difficult as the size was limited by the capabilities of a manual windlass.

Over the years expectations, fashion and technology have all changed. Electric windlasses are now common (allowing heavier anchors and longer chain without a very fit and strong crew). There have also been really significant improvements in anchor design during the last 40 years. As a result most boats store their anchor permanently in the bow roller, ready for use and to save lifting it around.

But our bow roller was not designed to store an anchor when at sea, despite that the old CQR Anchor was clearly often stored there (and as a result has damaged the bow roller). Now our anchor locker isn’t big enough for a modern anchor (as they typically don’t pivot and lie flat). Because the windlass is in the anchor locker it requires an extra roller to change the angle of the incoming chain so that it is right for the windlass.

Old CQR anchor in the locker. Note the extra roller in the middle which lines the chain up properly for the windlass.

In the next picture you can see the bow roller and how the chain has damaged the route into the locker.

We obviously get a lot of water into the anchor locker. Despite the little drain holes it collects a puddle of rainwater and if a wave comes on deck that big slot will allow a lot into the locker. Both these have presumably contributed to the rust attack on the windlass.

When we bought Vida the chain was in very poor condition and hence wasn’t able to neatly pile into the chain locker which is under the v-berth in the forecabin.

We were looking for ways to replace the roller in the bow fitting (not only bits chipped off by the anchor but also suffering from UV degradation), but it is difficult as there is no side access to the pin.

Ok so that is the challenge. What are we planning?

The Plan

This plan has evolved a few times 🙂

We start with the anchor hardware. After reading lots of tests and opinion pieces we have chosen a SPADE Anchor. It is one of the “New Generation” anchor designs (about 20 years old). I don’t think I’ve seen it outside the top 5 in any test (in one test they broke the test equipment with a SPADE Anchor).

It does disassemble into two pieces which can be convenient. The shaft is actually 3D (a hollow triangular cross section) which means it is incredibly resistant to sideways forces (such as when the boat swings round to pull in the opposite direction due to a tide change).

The pointed tip is actually hollow and filled with lead so that it is very nose heavy which helps it dig in reliably.

By just about every table of anchor sizes I have gone up one size. So this is a 30kg anchor which means that, at least in theory, it should be adequate for a full storm, if not a hurricane. It won’t be our only anchor but we are following the advice that a big anchor in your locker does nothing so make it your normal anchor.

If I wasn’t going to have a SPADE anchor then I’d probably go for the quite similar and very new Mantus M2 (which unlike their earlier anchor does not have a roll bar).

To go with this anchor I have what should be top quality Italian chain from Lofrans. 80 metres of 10mm, again oversized. I’ll add some line to the end of that should we visit the pacific where there can be some very deep anchorages. This chain alone should be good for pretty bad conditions in up to around 15m or 50 feet depth of water.

This anchor and chain is going to be far too heavy for us to recover by hand (except we would find a way to use the main sheet winches or a block and tackle in an emergency). So we have an Electric Windlass to fit.

This was really what set the limit for the anchor and chain. This was the most powerful windlass that was sensible in price and which used 12 volt. So that stopped me getting the next size anchor.

Now we come to the changes that we need to make.

The bow roller is not suitable for this anchor. It will not hold it securely when sailing. It also won’t be able to fully self launch (so if you let some chain out the anchor will just sit there until you tilt it a bit by hand). We have been thinking about a lot of options in terms of custom alterations to what we have. We might still go down that route for cost reasons. However, what we want to end up with is essentially a Mantus Bow Roller with their Anchor Mate. By removing the right hand roller and side of our existing bow roller we can fit the Mantus Bow Roller on top of the flat base of our existing bow roller.

Then the next set of connected changes are somewhat bigger (and won’t necessarily happen before we launch for our first sailing season). They are designed to address a number of problems:

  • New windlass isn’t going to fit in the existing locker using the same hole to drop the chain below.
  • We don’t really want a new electric windlass to be sitting in a pool of water and to have slat water sloshing in and taking a while to drain.
  • We want a more direct line route for the chain from the windlass to the stored anchor and bow roller.
  • We need more space for the chain and we want it further aft (back) as it is heavy.
  • We want to fit a removable inner forestay for our storm jib and need a strong-point to attach it to.
  • We love that many newer boat designs have a watertight bulkhead inside the bow so that if you hit something and get a crack or hole right in the front of the boat there is a chance that the leak will be contained behind the watertight bulkhead and you won’t sink.

So the plan (today) is to remove the lid of the anchor locker and cut out the forward section of it’s the floor. Then we will remove the interior woodwork of the v-berth to provide access.

We will then fit a crash bulkhead in several sections all the way from the deck to the bottom aft section of the anchor chain locker. This will be chunky plywood, coated in epoxy, attached on all edges to the hull and deck using thickened epoxy fillets and then glassfibre cloth with epoxy resin. It will have enough watertight inspection hatches in it, that all parts of the hull can be accessed in an emergency. The remaining part of the anchor locker floor will be joined to the new bulkhead for strength and watertightness.

I’m estimating that the gap between the watertight bulkhead and the V of the hull will be about 10cm, so not a large “crash box” but better than nothing.

The inside surface will have a sheet of slippery plastic (such as we have bought for our solar panel slider). So it will act as a shute for the anchor chain which will then slide neatly to the bottom of it;s locker which will be as far aft as possible.

Where the crash bulkhead attaches to the deck will be reinforced so that a chainplate can be fitted for the removable inner forestay.

The old anchor locker hatch will then be strengthened and permanently refitted as part of the solid deck. It will become the base for the new windlass which will sit on the deck (we will make a box/seat that will cover the windlass to give some weather/water protection when it isn’t being used).

We will fit a new chain pipe to go from the windlass down through the old anchor locker. From there the chain will simply slide down using the new bulkhead as a shute.

We will provide an opening door from the forecabin into what remains of the old anchor locker as useful storage.

Then we can reconfigure the forecabin. We don’t think we will have a fixed v-berth but instead 2 foldaway single berths with the option to use the cabin for stowage or with a bench for the sewing machine and a seat.

Finally, our normal anchoring style will be to use a bridle. If you just have the chain then in wind and waves as the bow lifts it can cause the boat to snatch at the anchor, as there is no stretch in the chain. This can jerk the anchor out of the sea bed and cause it to drag. There are examples of boats ending up on the rocks just due to the waves from passing ferries because this happened.

The bridle is made from a nylon, stretchy rope. It has two lengths joined as a V. The point of the V is attached to the chain and the two ends are cleated on the boat, one each side. The chain is loosened and now the springiness of the bridal protects the anchor and boat from snatching.

By using a bridle rather than a single line for anchoring and also for mooring balls we avoid any rubbing against the stored anchor (when on a mooring) or the chain (when anchored). The bridal also helps reduce the tendency for a boat to yaw from side to side when anchored.

That means we have a 2nd bow roller that will very rarely need to be used. So one day we hope to add a removable bowsprit to use for an asymmetric spinnaker or code zero sail to improve downwind and lightwind sailing speeds (and for the spinnaker to be easier to use).

While this might sound like a lot of work it isn’t too complicated and should make a huge difference to how convenient and easy anchoring is. It will make it much easier both to anchor and to raise the anchor, plus it will also improve the reliability of anchoring. Last but not least it will help considerably with safety not just around anchoring but also in strong winds (being able to have a storm jib) and if we ever hit anything. Now that we have the expensive parts (anchor, chain and windlass came to over £3,000) the rest is mostly wood, epoxy and time (only exception is sorting the bow roller).

7 thoughts on “Plans for anchoring

  1. dullsdulls June 29, 2020 / 3:59 pm

    Please put up pictures when you have finished this job. Andy


    • dave42w June 29, 2020 / 5:55 pm

      Absolutely, once Wales opens up and we can actually visit Vida it will be very nice to get back to real photos of progress rather than just our dreams 🙂
      Hopefully by mid July!


      • dullsdulls June 29, 2020 / 8:30 pm

        Dave can you tell me what the deck is made of? Is it solid glass or does it have a core and if so what is it? Thanks


      • dave42w June 29, 2020 / 10:15 pm

        I’d also say that due to the very small number of holes in the deck & coachroof (no screwed on teak deck, moulded handrail supports, no toerail bolts) compared to some other manufacturers) the problems are likely to be small.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.