The need for Active Solar power generation

With the our commitment to Zero fossil fuel sailing we have been having to review and update our initial Solar plan. Designing our Solar Arch has been part of that.

The traditional “passive” approach to solar is not going to work for us. By that I mean the idea of putting up a few solar panels and forgetting about them. We need to generate far more electricity from solar than this approach achieves.

So what do I mean by “Active Solar power generation”. Unlike shore based like people living on boats are used to being proactive about energy use and supply. So the mindset includes managing consumption and keeping an eye on battery state. However, for a long time this has been done with the expectation that you can always charge the batteries by running the diesel engine or a generator or by going into a marina and using the shore supply.

We are making a determined effort to keep electric consumption down through a number of deliberate choices:

  • Wind vane self steering, keeping the electric autopilot only for redundancy
  • No freezer. Yup it does constrain the food you can take and keep but fridge and freezer are huge electrical power hogs.
  • Reduced Computer consumption. We are going to be minimising laptop use by having Raspberry Pi single board computers for navigation, entertainment and “office work”. They run on 12 volt.

However, by committing to Zero fossil fuels we are increasing our electric consumption significantly and reducing our energy sources.

Increased consumption:

  • Electric Motor. This uses a lot of energy and is the opposite to the norm. When we motor we will be drawing lots of energy from our batteries rather than putting it in. While we will have regen (charging the batteries when the propeller spins while you are sailing) the change is incredibly significant as the norm is to see the diesel engine as a provider of almost unlimited “free” electricity and hot water. Of course it isn’t free at all, but more a desirable side effect that has resulted in a significant increase in the number of hours the engine is used. So has become a norm to motor whenever the wind speed drops because at the same time you will charge the batteries and heat the water.
  • Electric cooking. All forms of electric cooking (Induction hobs, Microwave, Pressure Cooker) use a lot of power (although mostly for a relatively short time). The norm is to burn bottled gas (occasionally diesel or paraffin). By cutting out another fossil fuel we increase our electric consumption.
  • Dinghy Outboard. We have an electric dinghy outboard engine. So far the boats we have seen with electric motors (Sailing Uma, Beau and Brandy) have not switched to electric outboards (despite the hours they spend maintaining their petrol outboards). In part that is because they want to be able to go faster in the dinghy (see this video from Sailing Atticus for a good reason for this) but it is also about the need to charge the outboard engine battery.

Increased generation

So this is the heart of the challenge. By committing to no fossil fuels all our energy needs to come from renewable sources. We have three options:

  • Engine regen. We are hoping this is going to be significant for us. On longer passages it will do more than recharge the motor batteries from leaving harbour but will contribute something to the daily consumption. It also has the potential to provide power through the night. However, it is only available while sailing and only while you are sailing fast enough (probably won’t contribute much below 5 knots). As liveaboard cruisers typically spend the vast bulk of their time at anchor the contribution isn’t that great.
  • Wind generators. These have the significant advantage of potentially providing significant power at night and through the winter. However, there are problems. Many people complain about the noise and vibration. Fitting them without causing shading on solar panels is a challenge. They do require a lot of wind, probably more than you would normally be looking for in a sheltered anchorage. We’ve looked at the Rutland 1200 but at the moment feel the cost and installation challenges are too great.
  • Solar. The typical installation of solar has been changing quite significantly. For liveaboard cruisers the norm now seems to be to have a solar arch with between 300 and 600 watts of solar panels. That is enough for minimal electric motor use (see Sailing Uma, Beau and Brandy or Rigging Doctor) but not for electric cooking, electric outboard etc.

So Active Solar

This is where our plan differs. We are going to have to be far more active about our solar generation. That means a number of things.

Our solar arch needs to be tiltable to increase it’s efficiency (both Sailing Uma and Beau & Brandy do this but the vast majority of solar arches do not).

When sailing we will need to be active in adjusting our solar generation. Some panel positions will be pretty much setup and forget (such as covering the upturned dinghy on the foredeck with panels before leaving harbour). Others will only be possible in lighter conditions (some along the guardrails for example).

The goal will be to have enough permanent solar when sailing (solar arch and wheelhouse = 510 watts) so that with the regen and battery bank we will be able to get through a gale when we have to put all the other panels below. That shouldn’t be too hard as in those conditions you are not likely to be doing much cooking and you can put off charging the dinghy outboard.

When conditions improve we should be able to sail in light to moderate with an additional 1,050 watts (2 x 175 watts on the dinghy, 4 x 175 watts on the guardrails from the cockpit to the stern. Some of this is going to suffer from massive shading at times so we are assuming it will be about 1/2 as efficient as the solar arch.

Then at anchor we need to have lots of solar panels that come out and are positioned dynamically. We will need to have solar panels positioned above the mizzen boom, around most of the guardrails and possibly above the deck. How many of these we will need is still uncertain (it depends so much on where we sail – if Coronavirus and Brexit mean we have too stay around the UK then we are going to need a lot more solar in Scotland than the Caribbean).

So far we are planning on a total of around 2,400 watts (13 x 175W + 4 x 40W) which so far I have only heard of on large catamarans.

We will need to be active in working with these panels. We will need to adjust the tilt during the day so that as the sun and boat move their efficiency is kept as high as possible. We will need to move them if other boats come alongside or if we are in a marina. We will need to put a lot of them below when sailing.

So I’m going to be building a standardised wooden surround for each panel. This will provide attachment points so that any panel can be fitted to any section of guardrail (and be tilt adjustable) or to the supports above the boom and dinghy. The edging will provide bump protection when moving them around and allow panels to be stacked without scratching the glass. We have chosen the 175W Victron panels as our standard because they are about as large as we can lift, manoeuvrer around the boat and fit through the main hatch into the cabin.

Exactly, where we will store all the panels that need to be “reefed” (taken down) in a gale is currently not fully sorted. Some might go on the aft deck or aft cabin. Some in the corridor to the aft cabin where one of the diesel tanks was. Some in the forecabin (which is likely to be mostly storage when there are only 2 of us).

We are under no illusions that we can achieve zero fossil fuel without ongoing, daily labour to maximise solar generation. But while that might seem a lot of work remember that we won’t spend any time (or money) finding and visiting fuel docks or carrying jerrycans around in the dinghy.

In summary

We believe we can capture several orders of magnitude more solar power than is generally the norm for monohull cruising yachts. But it will require us to work at it every day.

Motor frame ends fit

Progress on the Electric motor frame is very visible now. We have both end plates finished enough to fit them (loosely) to the motor and put the propeller extension shaft in.

As the pulley on the propeller extension shaft extends below the frame I tipped the whole thing on it’s side to check that it fits.

Now just to add the angle lengths around the edges of the end panels, the angle lengths to connect the front and back plates and then the diagonals for rigidity. But that can wait for another day πŸ™‚

Solar arch

We have been trying to work out a design for a solar arch for a very very long time. Designs have come and gone multiple times. When I wrote our Solar Plan back in September, I said “I haven’t quite given up on putting panels off the back of the boat” but at that point we hadn’t make the decision to go for an electric motor and we hadn’t connected the dots with self steering.

So we continued to think about what we can build. This video from Sailing Britaly has continued to be particularly helpful.

But a solar arch on Vida is very complicated πŸ™‚

We have three things that together make it very complicated.

  1. As a typical cruising boat design from the 1970’s our Rival 38 has a relatively narrow stern. That obviously restricts the space available for solar panels compared to a modern design where the beam at the stern could easily be doubled on another 38 foot design.
  2. Then we make it worse by having a ketch rig. Not just a ketch rig but one with a mizzen boom that stretches past the pushpit rail to end level with the very end of the stern. So we need to position the panels to avoid the boom, it’s sheets etc.
  3. Finally the extra thing that makes it difficult is something we don’t yet have. A Hydrovane Self Steering system (I mentioned that this might be needed in Zero fossil fuel sailing). We need vane steering to reduce electric consumption to a manageable level (electric autopilots use a ton of power, I’m guessing a 42 year old even more than a new one). With a centre cockpit and the wheel in a wheelhouse any vane steering that connects to the steering wheel via rope is a non starter. We don’t have space under the aft cabin bunk for a Cape Horn system that connects through the stern directly to the top of the rudder stock. The Hydrovane has the additional advantage of giving us a spare rudder.

So the plan is to shorten the boom a little (120mm). That should work without re-cutting the existing sails. When we replace them we will have a fully battened mizzen with a fat head and a shorter foot so the boom can be shortened a little more (as well as the sail being more efficient).

We have sent the details off to Hydrovane for a quote. We think the unit can be mounted high enough for the van to be above the boom and not hit the sail. The only time it might touch is in very strong winds (when the vane leans over more), but by then the mizzen would be reefed or lowered out of the way.

So now we have been planning the final piece of the puzzle. The solar arch.

We are going to have 3x Victron 175 watt panels high above the stern. That means a rectangle approx 2m wide and 1.5m long. Unfortunately even above the complications that I have already listed we have added 3 more.

  1. As solar generation is so important to us we need to be able to tilt the panels towards the sun to increase their efficiency.
  2. We need to be able to move them forward and aft. In a marina as well as in a storm we do not want solar panels sticking out 1.5m beyond the stern of the boat. So we need a “parked” position where they do not extend beyond the stern but instead extend over the mizzen boom (obviously in this parked position we can’t use the mizzen, a restriction we are happy to accept).
  3. Our budget is limited, we can’t afford to pay a professional to custom build something beautiful in stainless steel. Due to the height and restrictions that reduce the opportunities for cross bracing we don’t think that bolt together fittings (such as used by Sailing Britaly) are going to work. We can only find the range of joint connectors we need, for 25mm tubes which we don’t think is going to be strong enough.

We will document our design as we build it (and I really want to get the mizzen mast up and the hydrvane fitted first to check clearances as we go). However, this is the basic idea.

Two carbon fibre “masts”. The bottoms will be halfway down the stern, one each side. They will be vertical fore and aft (positioned so that the shortened mizzen boom just misses them) and they will slope outwards as they go up. So approx 1m apart at the bottom and just over 2m apart at the top.

There will be a pair of cross braces as an X to hold them vertical side to side. Also each of them will have a pole from just under the boom going forward to the size deck to keep them upright fore/aft.

The 3 panels will be in a tray that fits between the mast tops. We have figured a way for the tray to move to the forward or aft position and also for the whole tray to tilt to face the stern or to face the bow.

Fortunately, we think it is going to be a lot harder to explain than it is to build πŸ™‚

While the carbon fibre poles are quite expensive (over Β£700) everything else is going to be pretty cheap, so hoping to keep the total cost under Β£1,100. That for something that should be very strong, pretty light and give us really good functionality.

Staycation Progress 1

So on holiday this week but still at home. Very much trying not to take risks or push boundaries of the rules.

So today Jane has finished another Saloon backrest:

We have also been making more motor progress. Working on 2 frame back plates, I finished drilling the end stop holes for the 4 slots that are used to attach it to the motor with it’s height adjustment.

The one end plate at a time we started using the Dremel to connect the holes into slots.

We managed to finish all 4 slots in one of the plates and do a test fit. Perfect first time πŸ™‚ On this plate we now need to notch the edge (marked in read) to clear the control wires that come out the back of the motor.

Then repeat the slots in the 2nd back plate.

Once we have the front and back plates all done we can start adding the lengths of angle stainless steel to the edges, plus more to connect the front and back plates at the four corners. Then one flat stainless steel bar per side as a diagonal cross member.

At that point we should be able to add the bearings for the shaft that will connect to the propeller shaft, then the shaft, the belt drive pulleys and the belt drive itself.

The motor throttle is due later this month and the 4th battery (so we will have 4 x 12 volt 300AH batteries connected in series to give 1200AH in total, delivered at 48 volts.

Hopefully it won’t be too long before we are able to get to the boat, at least for a day trip, so that we can collect all the battery cables and crimp connectors. Then we can get it all wired up and tested at home.