Shore Power electrical progress

Feels like solid progress for an all electric boat today 😊

Our shore power is now connected to a waterproof 32 amp Victron socket in the cockpit. From there it goes through a Victron 7000watt Isolation Transformer and then our Victron Multiplus II (combined 5000watt Inverter and 70 amp battery charger). Then onwards to the boats mains ac consumer unit. The rest is temporarily wired in extension leads at present.

Now I can work on the 48volt battery bank, connect that to the MultiPlus. And then we can get the solar connected so that we stop paying so much for boatyard electricity.

Storm Franklin and cheap drawers.

When we saw the forecast for Storm Franklin yesterday we decided that gusts over 60mph were going to prevent sleep and be quite scary.

So we left the boat before lunchtime while the wind was “only” gusting to mid forties. On our way back now as the wind will drop massively. We have called into Ikea at Warrington, nearly on the way, to get some plastic boxes to use as storage drawers on the shelves we are going to put into the wardrobe spaces.

Nice that we were able to put some free charge into the car while finding the boxes (the website and zapmap say you have to pay but we were not asked to present a card).

While at home I put some more plywood and timber in to make the shelves from. Didn’t have space for anymore when we came on Friday.

Update, first drawers now fitted and video is done:

An electric adventure today

Two weekends ago we sold our Citroën van. Last weekend we collected our new car, a 2016 Nissan Leaf electric car.

Tonight, after an evening work meeting, we will go on an adventure in it to the boat.

I fully charged it overnight (normally we are only charging to 80% for longer battery life). This morning it showed a range of 100 miles at 100%. It is 98 miles to the boat.

There are about 8 charge points from 60 to 92 miles on the way, but according to Zap Map the reliability of them isn’t brilliant.

What we don’t yet know is how that range will shrink when driving at a steady speed on motorway & dual carriageway in temperatures of about 4° C. It isn’t far to the M56 and is then nearly 80 miles to the first roundabout. I think we will set the cruise control to 60mph (except where the speed limit reduces to 50mph) and see how we go.

Two sections of 50mph speed limit in Wales are for pollution control. Shouldn’t we get an exemption?

Will be our first use of both public and fast charging, so quite an adventure, in a winter night. Should get there between 12.30pm and 1am all being well.

First boat stay in 2022

We arrived yesterday evening and are here for a couple of nights. It is very cold! Snow in Manchester before we came, snow visible on the Snowdonia range. So, too cold to do any epoxy work. Fortunately, the two panel heaters and two fan heaters can keep the cabin nice and warm.

Instead of working on the starboard backing plates for our main mast dyneema chainplates , we have recorded video footage describing our latest idea for external dyneema chainplates. Could be a great option for lots of older boats who are switching to dyneema rigging and want to avoid expensive fittings or who are concerned about their metal chainplates.

We also recorded progress on redesigning the bilge under our saloon for battery storage, water tank and for the first time some thinking about lightening protection. That involved taking the main companionway steps down, wasn’t as bad as I feared. We now have our batteries stored much better in approximately the right place.

We have also done some more detailed planning for the galley stowage and space for the fridge.

The weather is expected to be wet, windy and cold in the morning so we have some jobs planning work on everything in the motor room.

Coming up next week will be big news about our transport for getting to and from the boatyard.

All very exhausting 🙂 so an early night is next!

Mixed bag progress

Today was definitely another no outside jobs day. So we went to Aldi in the morning and got soaked as we came out.

In the afternoon we worked on different things.

Dyneema Chainplates

Jane started learning Dyneema splicing and after a practice, she produced our first real Mizzen chainplate:

This works in this way. The knot stays below the backing plate. The eye (with the low friction ring removed) goes up through a hole in the backing plate and the deck above it, to emerge above the deck. The hole is, of course, lined with epoxy and will have been sanded and rounded off so it is very smooth. The low friction ring is then put back into the loop. This is now your chainplate. Our shrouds will end with another low friction ring and they will be attached to the chainplate with a dyneema lashing. This lashing will be used to tension the shroud (and take out any creep).

Once the chainplate is fitted we have two issues to address. One is protecting the Dyneema from damage and the second is to stop water running into the hole and wicking down the dyneema so that it drips into the cabin.

First we need to stop the dyneema chainplate from being damaged. There are three main ways damage is likely:

  • dirt washing into the hole in the deck and cutting into the Dyneema.
  • ropes rubbing against the Dyneema where it is visible above the deck and causing chafe.
  • Sunlight causing UV damage which weakens the dyneema.

We have a two part solution to protect against all these forms of damage.

On the deck we fix a “mushroom” around the hole, with the hole extending through the middle of the mushroom. This stops water running down the deck going into the hole. Then we have a Sunbrella fabric sleeve that fits around the chainplate and lashing. At the bottom this is drawn tight around the base of the mushroom, at the top it is a close fit around the shroud above the lashing. The fabric stops larger waves getting into the hole and reduces the amount of water that will wick all the way down. It also protects the lashing and chainplate from UV and chafe.

Below deck we create a simple watertight “box” around the knot. This catches any water that wicks all the way down and can be easily removed to empty it and inspect the dyneema chainplate knot.

The whole chainplate can be removed for inspection by taking off the fabric sleeve, slackening the lashing and pulling out the chainplate from below. With a 2.5m dyneema line and a few minutes work we can make a replacement which can be fitted anywhere in the world, even at sea.

Navigation destruction

Meanwhile, I tackled removing the plywood soffit from the underside of the deck above the navigation table. The vinyl headlining had fallen off this very early on due to being very wet from the window above leaking. As expected the hidden side of this plywood showed a lot of water damage.

Then I removed the vinyl from the side of the hull and cut out the plywood that it was stuck to. This was much thicker than the plywood lining has been elsewhere, presumably to provide a good surface to fit instruments to. Now we can reach the bolts for the genoa track and for the gate stanchions – both hidden and unchecked for 44 years.

As you can see the actual chart table has significant water damage. Long term our plan is to remove the whole chart table. We will do on passage navigation and pilotage from the wheelhouse (which we will be able to pretty much fully enclose) so the chart table won’t be needed.

Overall, quite a bit of rubbish removed from the boat:

We haven’t fully decided what to put in this space. The current favourite idea is a comfy forward facing chair with small desk. It should be comfortable to sit in when sailing and also suitable as a quiet place to sit and do computer work. We will wait to see if we do want to fit a Refleks diesel heater, if so then that will go alongside the desk.

We have realised that we can simplify our galley if we can use the electric “Instant Pot” (actually a KingPro branded version) in the current navigation area. At the moment it can just sit on the navigation table (as can an electric filter coffee machine). However, eventually we want a gimballed shelf that we can put up over the desk whenever we want to use one of these appliances at sea. This means that our galley can have a permanent gimballed shelf for the microwave and for one of the induction hobs which is a lot simpler than our original plan.

So we ended up quite happy with today’s progress. Hopefully better weather tomorrow so we can make easier progress.

Adding more simplicity :-)

We have been busy with the rest of life this month (September is always a very busy time at work for us both).

However, our thinking has been progressing and we have been finding lots of inspiration from very small boats and from other people’s projects. So for example this video from Sailing Magic Carpet

It ties in with our Foredeck and Forecabin plans update or at least it confirms that we are making some different choices.

Our chain lockers were quite similar. We totally agree on the need for more space for chain and for the weight to be further aft. Initially our plans were quite similar (see Plans for anchoring). However, this is where we have been able to simplify things a lot.

A combination of things have meant that we are completely changing our forecabin, it will be a lot simpler in many ways. We started that thinking in Foredeck and Forecabin plans update but we can now go further.

The two key things that have led us to a simpler solution are Water and Beds.

Water

When we decided to remove the stainless steel water tank and use some of the space for our batteries we have been through a number of ideas for water tanks. Now we have realised we can build them into the hull and this gives us huge advantages:

  • far greater capacity as no wasted space
  • much safer. They strengthen the hull and create extra crash boxes

We also realise that we can use the same technique for the batteries (rather than a drop in box build it into the bull), for the chain locker and for storage/crash boxes.

Beds.

Already we have reduced the number of beds by removing the fold out pilot berth above the starboard settee (it has saved weight and created a much more usable space). We have also replaced the “V” berth in the aft cabin that worked best as a 2 singles with one double Pullman style berth.

When we realised that the “V” berth in the forecabin wasn’t actually long enough for an adult, let alone 2 it simplified things a lot. It also means that we have a chance to create a much better chain locker than Magic Carpet 2.

So.

The key limit on the “V” berth length was avoiding having the chain pipe come down through the middle of the bunk. By moving to one single bunk we can move the chainpipe slightly to starboard so that there is plenty of space for the single bunk to extend past the chainpipe on the port side. Not only does this make the bunk full length and a good width it also means that we can use the chainpipe to drop the chain vertically into the chain locker despite moving it aft. That is a huge advantage over our original plans and what Aladino can do on Magic Carper 2 where the chain slides into the chain locker almost at the bottom – the chain can stack better, be further aft and have a deep crash box forward of it.

I’m now planning 4 watertight areas under the original”V” berth height. Each of them will be considerably higher than the waterline and all of them will be able to have a removable, watertight lid.

At the very forward end there will be a proper crashbox that we will probably fill with foam (there will be another forward of this beyond the foot of the bed that will also be filled with foam). These crashboxes will mean the whole bow from below the waterline to the bow roller will not be able to flood the boat if damaged.

Aft of the crashbox will be the chain locker. When at sea we will disconnect the chain from the anchor and attach a line between a deck bung for the chainpipe and the chain which will drop down to the locker. That will allow a watertight lid to be fitted over the chain locker. The bottom of the anchor locker will drain into a much smaller locker aft of it. This will have a pump to remove any water that comes in to the chain locker with the chain. This small locker will also have a watertight lid so that the two act as another crashbox.

Aft of this will be a full width built in water tank. The top of this will be the “footwell” when sitting on the bunk. It too will act as a crash box so a hole in the hull here will contaminate this water but not flood the boat.

The doorway into the forecabin will no longer be full height. The bottom will be level with the top of the water tank with a step in the heads compartment so that you can get up and into the cabin (no standing headroom but full sitting headroom on the bunk). The heads compartment will be your dressing area. There will be a door for this cabin, separating it from the heads.

Additionally, I want to learn something from the older Amels (like Delos). So we will carry a sheet of wood that can be bolted over the doorway on the forward side of the bulkhead. It will have a rubber seal so that the whole forecabin can be turned into a watertight crashbox. I can imagine that when sailing with only the two of us we might put that in place quite often when at sea (and just use the forehatch for access to the forecabin as a storage area.

Simpler

By embracing the limits on the size of the forecabin which mean a V berth for two adults isn’t practical we end up with a much simpler, stronger and safer boat that will suit our needs much better. We don’t need to be able to sleep 3 couples and 2 singles on board, but we do need to carry enough water and would like extra protection from potential damage caused by debris floating around our oceans.

Thinking about this has also helped us think about simpler supports for the Bow Roller, Anchor Windlass and Inner forestay. So we can hopefully progress them soon.

Once I can get the companionway steps removed, this approach of watertight compartments built into the hull is going to make the battery boxes much simpler and more compact. I think the outcome will be larger water tanks and being able to move the Inverter and Mains Galvanic Isolator into the motor room so that we can keep the wet locker behind the steps.

It takes a long time to simplify things, but the results are well worth it.

Mast preparation continued

With a beautiful day we had a nice slow morning with family and then got back to preparing our main and mizzen masts for painting (well we also washed the dinghy and equipment).

We now have all the wiring out of the main mast.

We have put messenger lines in for them all.

We have removed both winches (a single speed Lewmar 8 and a double speed Lewmar 16, neither self tailing) and all other fittings showing any corrosion.

I was a bit annoyed by the winch mounts. The winches has been fitted with bolts that were too long and so instead of beinfg simply bolted to the winch mount some of them has gone into the mast itself. That has caused more corrosion and extra holes.

So everything is off and the masts have had a wash including a wash of the inside with a hose.

We have decided we don’t have to do a perfect job immediately, so we have not removed anything that we still need and that isn’t showing any corrosion eg spreader roots, spinnaker pole track. Similarly we have decided not to remove winches and cleats from the mizzen (upgrades can come later).

Tomorrow, is clean with acetone, sand, clean and get a coat of primer on. Then we can fill holes we don’t need to reuse with thickened epoxy, then we can sand and clean before a 2nd coat of primer. That then buys us some time for the rest of the work as the aluminium won’t be able to oxidise.

Another task has been looking at all the hardware we need to fit to the masts.

We are now looking at re-purposing the existing Lewmar 16ST for our mainsail reefing. Then 2 Harken 20ST for the halyards. If we can find something suitable secondhand then we will go for that instead.

We are only going to fit 3 actual halyards and supporting hardware at the moment (Yankee or Genoa, Staysail, Main) but with messenger lines for 2nd headsail, trysail and spinnaker.

We are also going to upgrade from cleats to Rope Constrictors for these halyards, skipping all the generations of clutches. Rope Constrictors are about twice the price of a standard clutch but they don’t damage the Halyard at all. But a replacement Halyard is about three times the extra cost. We have found 2 sources Ronstan and Cousin Trestec.

We are going to replace the tired halyard exit sheeves with the newer, simpler plates (and go from 2 to 5 of them so we have support for all the halyards we will ever need.

We have decided to simplify the lighting. We don’t have a simple way to fit lights to the spreaders and get the cables into the conduit at the front of the mast. That means keeping the deck light and the steaming light on the mast Deck light is lower than the spreaders, steaming light is above. However, it looks even simpler to get a combination LED steaming and deck light. One less cable to run up the mast.

Anyway, painting and filling is the first priority. All the fittings can wait for a while.