Our Scandinavian challenges part 2

In Our Scandinavian challenges part 1 I covered the time/permission complications of getting to spend time in the fantastically beautiful (and remote) parts of Scandinavia and the Baltic given the impact of Brexit.

I ended with “In part 2 I’ll look at the other key challenges these cruising grounds have for us (particularly heating and renewable energy).” so here we are.

We are not (definitely not!!!!) planning to spend winters where the sea freezes unlike some of those crazy YouTubers I linked to in the last post 🙂 However, we are going to be spending time where some heating is going to be needed, whether that means wintering in the UK or being further north in the Spring or Autumn (either heading towards to back from a summer in or close to the Arctic). As we are going to be living aboard full-time in or retirement we want to give ourselves as many options as possible.

It should be no surprise that when it gets cold an electric boat that is aiming to have zero fossil fuels gets hit by a double whammy.

If the weather is cold enough to need heating then it is almost certain that you will get very little energy from solar panels (even on those bright sunny winter days the sun isn’t very high in the sky for very long).

If it is cold then you are going to need to heat the boat and all forms of electric heating use a lot of electrical power. Plus of course we tend to prefer hot food and drinks when it is cold and on a n electric boat that too will use lots of power.

So we generate less power but need more power. Ouch.

If we stick with a zero fossil fuels target then there are a number of options to help out but no magic solution:

  • Sail the boat to somewhere warmer 🙂 Given Schengen I suspect Turkey, Croatia, Cyprus and Algeria will be more popular for UK cruisers than they used to be. But the weather in the Mediterranean is no picnic, if anchoring you can end up moving often to find shelter from different wind directions. Winds can be very strong coupled with large waves that might come from a different direction. Another option is to go further south for example to the Cape Verde Islands, but then you could continue across the Atlantic to the best season in the Caribbean 🙂 But we do want the option to be able to winter in the UK so that we can visit family and friends.
  • Insulate the boat better. This is an obvious improvement that miraculously helps in both hot and cold climates 🙂 We have been working on going from zero insulation to a minimum of 10mm closed cell foam. See here for our first attempt to fit the foam – it didn’t stay up. Next plan is here but probably we will put more layers of foam to increase this to at least 20mm and reckon the purchase cost will be worth it in increased comfort and reduced energy use.
  • Heat locally. So rather than heat the whole boat do so in zones (we already have not heated the forecabin at all, in very cold conditions we could close off the aft cabin and stay in the saloon) and also use thicker duvets, heated blankets and hot water bottles (yes we won’t use a hot water bottle with an electric blanket!!) to avoid heating the cabin as much.

However, these are not going to be enough when it gets very cold.

We do have electric heaters (both wall panels and fan heaters). I think we will try some of the low power “greenhouse” style tube heaters under the bunks. That will give us 3 options to compare for warmth, control, comfort and energy use.

Despite all these efforts we are sure that in winter, despite all our solar, we will consume a lot more battery power than we can generate.

That leaves us with two more avenues to pursue. a) what other options are there to recharge the batteries b) what else can we do to make the battery bank capacity last longer.

What other options are there to recharge the batteries

One strategy that solves the problem is to spend time connected to shore-power. We have seen many cruisers on YouTube spend the winter in Marinas (Salty Lasses, Uma, MJ Sailing, Sailing Fair Isle are all examples). This way you get a permanent connection to mains electric. You can keep your batteries charged, have all your electric heaters running and stay warm.

But there are disadvantages. In the UK this quickly becomes costly (a winter marina berth for us will range from maybe about £1,500 for 4 months to £2,500 for up to 6 months that without going to the more expensive parts of the country where £800 a month would be a starting point). More than just the cost is that we want to live aboard our boat so that we can go sailing not sit in a marina for half the year.

So we want to explore options where we extend the time we can manage on batteries and go into marinas/harbours for a night every so often to get the batteries fully charged (and maybe have groceries delivered). It looks like we could expect to pay up to about £40 a night. One option would be to spend a winter along the South coast of Cornwall and Devon. There is beautiful sailing along that coast, lovely harbours, rivers and towns to visit. There are very lots of rivers with good shelter and many where you can anchor (eg Helford, Fal, Percuil, Fowey, Tamar, Yealm, Dart). Then you have a wide choice of marinas and harbours when you need to charge the batteries. If we can keep that under 10 days a month in marinas then not only do we get the sailing and beautiful views we also save money.

One obvious strategy will be to invest in wind generators, given that cold and windy weather often come together. They work out at between £1K and £2.4K per generator (remember we need 48volt ones). Calculating how much difference this can make is difficult, it depends how sheltered a spot you find and the weather conditions. We have a few options for where we might install one or more wind generators. It is important that we don’t end up casting shade onto our solar panels from the wind generators as that would have a dramatic impact on the solar performance. Also, as with the solar panels I would prefer to be able to take them down and inside if we are expecting a storm. If the demountable option works well then potentially we could have a position at the side of the mizzen mast that could be used when sailing. Then we would only put them wind generators up when the gain will be greater than the loss in solar due to shading.

As a starting point I’m thinking one wind generator using a demountable pole fitting towards the bow. With that we would only have the wind generator up while at anchor and it would be as far away from the solar panels and where we sleep as possible so that neither the shade nor the noise will be a problem. That will let us properly evaluate how much difference it makes. If we think it is enough then we could explore other options.

With our ketch rig the only option for that won’t cause shading and can be used both at anchor and when sailing is a permanent mounting on top of the mizzen mast. That doesn’t excite me. The top of a mast is the last place you want to add weight. It will also be moving around a lot in waves which will affect it’s performance. Finally, the foot of the mizzen mast is above the head of our bed. I’m concerned about noise and vibration disturbing our sleep. However, it would be out of the way and (until it breaks) very convenient. If we want that option to be available we need a generator that can be remotely braked (manually or automatically) if the wind strength is too high.

It is very hard to estimate how many nights in a marina having a wind generator would save us. We would have to save about 40 nights to recoup the cost. We could achieve that saving over a couple of winters if we could reduce the need to get shore power to once every 10 days instead of once every 5 days (both are guesses and will be very weather and location dependant). Of course it would also help avid the need for shore power a bit in other seasons, particularly if permanently mounted.

What else can we do to make the battery bank capacity last longer?

The most obvious answer is to install another form of heating that does not use the battery bank. All the YouTubers who have visited the Arctic Circle or Scandinavia in the winter have some form of heating that is not electric. They all say they can’t manage long at anchor otherwise. While our goals are not so extreme (the midnight sun is attractive to us but the sun not rising above the hills at all is not) we would be crazy not to learn from them. So what do they have besides electric heating (that they all only use when connected to shore power). There is a great video from Alluring Arctic on this, our takeaways from what we have seen are:

Wood burning stove

Uma have one of these and we have seen a few others. However, recent reports that we have seen on the high levels of pollution they release into the boat (mainly ash whenever you refuel it) and the air pollution from the chimneys mean we have ruled this out.

Diesel powered hot air

Probably the best known brand is Eberspächer, these install out of sight and burn diesel to heat air. Then then use a fan to blow the heat through the ducts around the boat. They are a more modern replacement for the paraffin heater we removed. The provide lovely warm dry air all around the boat. However, the ducting takes up a lot of space in lockers and they use quite a lot of electricity. Ran Sailing for example can only use it for one night or so before needing shore power to charge their batteries. Sailing Yacht Salty Lass have one and it is clear that these also require regular, quite time consuming maintenance to keep the insides clean and efficient. Obviously they need a diesel tank (and would normally take it from the main diesel engine tank which we don’t have).

So we are ruling this out for the loss of locker space, the significant electric use (which is what we are trying to avoid) and the amount of maintenance needed.

Drip fed diesel heaters

The brand that seems to offer heaters most suitable for us is Refleks. Their 66MW would fit neatly to a bulkhead which would be safe and not get in the way much. However, there are other options. The 66MV is insulated so it only heats the boat by hot water radiators, we could position that in a custom locker out of the way. The 66MK includes a stove top for kettles etc which would really help cut out electric consumption but I’m not sure where we could fit one. It seems some models can provide hot water for domestic use such as showers but I’m finding the information about which models do that a bit hidden.

As they are gravity fed they don’t use any electricity (I don’t think they even need a pump for the radiators?) and they are supposed to be very low maintenance.

We think at the moment a Refleks heater would be a good option. Whilst it does mean some fossil fuels it is far more efficient to directly heat the boat rather than run a generator to charge batteries to then heat the boat. It also gives a backup heat source should we have a catastrophic electric failure.

Conclusion

By combining lots of these options we hope to get to the point where we can cruise in Arctic summers, stretched Scandinavian sailing seasons and British winters while stretching out the time we can go without needing to connect to shore power.

We will work up to the full combination of insulation, localised heating, wind generation and a Refleks heater (hopefully for radiators in all cabins and hot water for showers) with the goal of being energy independent (with care and some help from the weather) for a couple of weeks at a time. Only time will tell. If nothing else works we can sail to the middle the Azores high pressure and bob around for a few weeks to warm up 🙂

Our Scandinavian challenges part 1

For a while now we have been watching YouTube Videos that have made us want to sail the Norwegian Atlantic coast and visit some of the thousands of islands and Fjords, we have also long fancied visiting the Baltic. Particularly:

  • Juho with Alluring Arctic has spent two years spent entirely above the Arctic Circle, his experience and videos are amazing. We are not tempted to believe that we can become expert with skis (or even want to) or that we would want to spend a winter so far North. But there are so many places he has shown that would be wonderful to visit, even without going as far as Svalbard
  • Erik Aanderaa with his No Bullshit Just Sailing slogan. His video Sailing Haugesund to Lofoten- Around the Norwegian Sea pt.1 is a particular favourite.
  • MJ Sailing spent last summer sailing up to Lofoton (see their Northern Europe playlist)
  • Sailing Uma are wintering in Norway at the moment (I don’t know how they have managed the 90 days in 180 Schengen rule). Their videos are exceptional quality.
  • Ran Sailing have spent the year a little further south around Sweden and it too looks beautiful (both the Baltic and Atlantic coasts).

The challenges for us

In many ways we would love to plan for a couple of years of our eventual retirement cruising the Baltic and Atlantic Coast. There is so much beauty to see, so many places to explore. We could imagine needing a couple of summers to explore both coasts, while retreating some considerable distance South for the winters.

However, this is going to be a huge challenge for us. In this first post I’ll tackle one of those:

First, Schengen

We are living through the nightmare that is the tragic national self harm that is Brexit, and especially the appalling choices made by our government to go for such a hard Brexit. It is obvious that they never thought through (or maybe are capable of understanding or only care about their own pockets) the implications for Northern Ireland, for the Fishing Industry, for UK citizens who have retired to the EU, for musicians touring etc etc. If we were 5 years older and had been retired a few years we could have spent unlimited time exploring Norway, Sweden, Finland, Denmark and the rest of the Baltic.

Now, we will need to tightly plan 3 month summer cruises. Options to cope with bad weather are going to be a lot more difficult, at the end of your 90 days we have to be somewhere where we can leave direct to somewhere outside Schengen. That needs to be somewhere we can stay for another 90 days without going back into Schengen (or it needs to allow us get to other places outside Schengen until the 90 days are up). While attractive to visit, 90 days in either the Faroes or St Petersburg doesn’t really appeal (safe wintering also being a factor).

90 day cruises means more summers will be needed if we are to get to the countries and beautiful cruising grounds that we have seen are there without rushing.

MJ Sailing got as far as Lofoten from the UK in one summer, mostly using coastal hops. However, they didn’t get to spend much time there or have time for the amazing cruising grounds to the north. What is more to stay within the 90 days they spent hours and hours motoring to make fast enough progress.

Our situation is different. We have a more powerful electric motor than most electric boats, and a large battery bank, however, we need that battery bank for everything, not just for the electric motor. Coastal hopping with lots of motoring is possible for us, but only if we moor-up with mains power to charge the batteries for more than 12 hours between trips (realistically probably safer to assume 2 nights if we have pretty fully drained the battery bank). Anyway, we don’t want to spend our time motoring, we want to sail. We also want to anchor rather than always need to get a shore-power hookup. It isn’t just about a preference for remoteness, we can’t afford to pay harbour fees every night.

This probably means that if we want long enough to explore a Schengen cruising ground in some detail we will need to make long direct passages. Then we only check-in to a country as we arrive at the area we want to cruise in, then our 90 days are all spent where we want to cruise rather than getting there. That has significant implications for the boat, our skills and passage making. The difference between getting to somewhere like Lofoton using coastal hops (much of it protected by islands) or a direct passage from the Faroes is huge.

So for that beautiful area of Norway north of the Arctic Circle we could, perhaps, sail from the UK to the Faroes (not part of Schengen) and then onward towards the Lofoten Islands. We then would have to depart Norway within 3 months, again potentially doing this as a long passage rather than coastal hop south. Part of the significance of this option and what increases the challenge, the difficulty is that is just not what cruising yachts have been doing. Everything works on the assumption of getting somewhere like Lofoten by coastal cruising with occasional overnight passages.

We are very attracted to longer passages and to spending a larger proportion of our time actually sailing than seems the norm. We have a boat that is well suited to it but are very short of experience. An estimate of 90% of time anchored rather than sailing is often quoted by live aboard cruisers (not sure if they all count hours or if they mean nights). So this is a big deal which will require a lot of preparation and be a significant challenge.

Generally, if cruisers are forced to switch from coastal hops to direct passages to cruising grounds then this is going to change things for many people – but maybe few want to visit these places. Or maybe they are happy to spend a lot of time and money motoring to meet the schedule. Or perhaps they will pay others to deliver their boat for them. That is not an option for us a) financially b) where would we live while someone is delivering our home and c) we don’t want to fly due to trying to be Sustainable.

When it comes to the Baltic I’m not sure. A first summer route via Copenhagen (one of my favourite cities in the world), up to the Stockholm archipelago, through the Göta Canal and back to the UK would make a great 3 months summer cruise. But what about if we want to spend the summer in the Eastern Baltic? Could we get as far as Finland before starting to count our 90 days? Is it possible to sail into the Baltic without checking in at either Denmark or Sweden? Still Denmark, Finland, the Baltic States, even Russia and then back to Denmark in 3 months is possible, even if tight.

So we could be looking at needing 4 summers to explore a significant amount of Scandinavia. Something like:

  • Denmark, Stockholm archipelago, Göta Canal: winter in the UK, maybe based near Falmouth
  • Norwegian Coast and Fjords towards Lofoten and back: winter in the UK, maybe based around the Solent for a change
  • Eastern Baltic: winter West Coast of Scotland/Northern Ireland
  • Faroes, Lofoten, Northern Norway: winter head south and onwards to the Caribbean

But there are other options. You could include an Atlantic circuit. So instead of a UK winter head down to the Canaries, then the Caribbean for December, then the East Coast of the US before crossing back but keeping North of the UK to get to Norway but it would be a rush to arrive for any summer in Norway.

Obviously, these Schengen rules are not new for people from countries outside Europe. However, I suspect these cruising grounds have not been so frequently visited by non-Europeans. I’m very interested in different experiences and views as well as ideas for reading and research

In part 2 I’ll look at the other key challenges these cruising grounds have for us (particularly heating and renewable energy).

House Battery Bank: Should we go 48 Volt?

While we wrote Going 100% electric: the “house” after Going 100% electric: the Motor we had in fact made most of the decisions around the house electrical system before we made the decision that we would go straight to an electric motor instead of the diesel.

Now we are thinking about making a change. The things prompting us to consider a change include:

  • The high cost of 48 volt battery chargers. We do need the option of charging our battery bank when in a marina or harbour (or even ashore in the boatyard). We can imagine spending sometime alongside in winter or even popping every so often just to get the batteries fully charged (the expectation of needing to live in colder climates in Winter is influenced by both Covid and Brexit which might limit our options for where we spend our time).
  • We think our house battery bank has ended up a bit small (4 x 120AH) and so are going to be needing to charge it from the Motor bank (4 x 300AH) quite often.
  • Having two battery banks at different voltages ends up creating quite a lot of extra complication.
  • With one exception (the anchor windlass) we have realised that our 12 volt usage is relatively low (LED lighting, boat instruments, water pumps).
  • While we have specified really thick cabling with big busbars and fuses, it is challenging to power 2 x 2,000 watt inverters from a 12 volt battery bank. The current that we need to safely pass is huge and this is where the vast majority of our house consumption will be (induction hobs, microwave, multi-cooker, watermaker, water heater).
  • We didn’t understand enough about how you can power 12 volt systems from a 48 volt battery bank. We thought they were too inefficient but have now realised that we either incur that inefficiency when charging a 12 volt battery bank from the 48 volt bank for all house uses OR when using a 12 volt house appliance (but not a mains powered item from a 48 volt inverter). The total losses are much smaller if we incur them only as we need the 12 volt power rather than to keep a whole batery bank charged.
  • We deliberately chose 4 batteries for the house bank that had enough output so they could be re-wired to be a 48 volt battery bank for the motor if the main bank failed. However, it would take ages to do. So a bigger 48 volt bank with two sets of 4 batteries wired in series and then the sets connected in parallel gives immediate access.

So a little maths about the issue with power over 12v cables.

P = power in watts (W)
V = voltage in volts (V)
I = current in amps (A)

Power = Current x Voltage or P = I x V

Switching it around we have I = P / V
So 4,000 watts from 12 volts = 4,000 / 12 = 333 Amps
Whereas on a 48 volt system we have 83 Amps

More amps = thicker cables and lots of care to avoid melting connections or high losses.

The disadvantages of changing from a 12 volt hour battery bank

Our current thinking

  • As we install them, we will configure all 8 batteries as a single 48 volt battery bank. This is pretty straightforward.
  • We will sell our unused 2 x 2,000 watt Victron Phoenix inverters (get in touch if you are interested).
  • We will use our Victron Orion 48 volt DC to 12 volt DC converter to power all our 12 volt appliances. We can always add extra Orion’s to run together if we need more power (eg for the electric auto-pilot)
  • It would be very expensive to add enough Orion’s to provide all the 1,500 watts at 12 volts for the windlass. So we will add a 12 volt battery close to the windlass. When the windlass isn’t being used we can charge the battery through the standard 12 volt system.
  • We will add 2 x 48 volt 3,000 watt Victon Multi-plus charger/inverters (2 of them to provide redundancy, we can run appliances with some limitations off one of them).

The Multi-plus inverters are smart. They provide mains power to the boat circuit and they automatically take that power from a shore power connection or if that isn’t available from the battery bank. When connected to shore power they automatically charge the battery bank. Two of them can put a total 70 amps into the battery bank.

We will have a 48 Volt battery bank with a total capacity of 1,680 AH (4 x 300 plus 4 x 120). Suppose we arrive at a marina with it fully depleted (ie down to 10% charge). That means we need to put in 90% of 1,680Ah which is 1,512 AH. At 70 Amps charging we are talking about 21 hours to fully recharge the battery bank (realistically we would expect many marinas to be limited to either 16A or 32A supplies so this will be a lot slower). Gradually we would expect marinas to upgrade their electric supply as the number of electric boats increases.

While there are costs to this change it does simplify a number of things, particularly with cabling and charging. All our charging goes into the one battery bank without having to switch solar panels between banks or do inefficient bank to bank charging.

It gives us much simpler use of the battery capacity as we can choose how we allocate the available power between house and motor. For example if we are not going anywhere and expect some sunny days in a while we can use all the capacity for the house. Or if we are motoring up a river to a marina all the house capacity is available for the motor.

In the long term we would expect more boat appliances to be available in 48 volt versions which will gradually reduce the need for DC to DC converters.

We haven’t made a final decision on this yet, but it does look like we are heading this way at the moment.

Lessons from the Vendee Globe and other trends

We are really enjoying watching the Vendee Globe (single handed, non stop, no outside assistance round the world race). Our key sources are the official website tracking and their YouTube Channel but we are also enjoying the content from Sea Wolves.

The weather has clearly been unusual and fits with this article about Jimmy Cornell where the guru of sailing routes around the world writes:

In 2010 I sold my Aventura III and, as I was 70, felt that the time had come to call it quits. That didn’t last long and by 2013, with accelerating climate change increasingly making the news for those who were prepared to listen, I decided to get another boat and attempt to transit the Northwest Passage. Described by scientists as the “canary in the mine” of global climate, whatever happens there eventually spreads to the rest of the world. I did manage to transit this once impenetrable waterway, now opening up as a consequence of climate change. I also saw the consequences of global warming affecting the local population. With mission accomplished, in 2017 I sold Aventura IV, and that was it. But not for long, as three years later, with climate change surpassing the worst predictions, I decided to put retirement on hold for a bit longer and try something completely different. Like sailing around the world on a fully electric boat along the route of the first circumnavigation 500 years previously.

It is good to see so many of the competitors in the Vendee Globle are working to raise awareness of climate, ocean and water issues. Many are also contributing to scientific research on issues such as plastic in the oceans, water salinity & temperature etc.

There are also a number of competitors using electric motors (they have strict standards of being able to motor at a set speed for a number of hours) and renewable energy charging of batteries (solar and water generators being the most common).

However, it does highlight for us that planning to sail around and about the planet in a few years time that conditions will not be as people have come to expect. Trade winds are not as reliable, both big storms and large areas of doldrums are becoming more frequent and more extreme.

We think we are starting to see some trends in the responses to this. Some get a lot more coverage than others. These are most obvious where people look for their own balances between safety, comfort (and for some luxury) and cruising area.

The trend that has been going for a long time now is to bigger boats and towards catamarans. There is a significant industry push with lots of publicity towards 45 foot plus fast catamarans. This is typified by the Sailing La Vagabonde channel and approach. To cross oceans safely (and cruise around the Bahamas during hurricane season) they use the very latest weather reporting which they access while at sea (Predict Wind) plus they get professional routing advice (such as when the crossed the Atlantic bringing Greta Thunberg back to Europe a year ago). They rely on the combination of up-to-date weather routing (in some cases with shore based professional forecasters giving individual routing advice) and a fast 48 foot catamaran to avoid the worst storms.

Another approach, is again for large catamarans but with the focus shifted from lightweight high performance towards luxury. A good example would be the choice of a new Seawind by Sailing Ruby Rose. Their focus has been on a mid performance catamaran designed to be spacious and luxurious while at anchor to fit with an approach to safety which avoids risks. So while faster than their existing 38 foot monohull they will be staying out of danger though a more cautious approach about timing and planned routes rather than on speed and dynamic routing. It does mean long periods in marinas and anchorages waiting for good weather, it does mean a lot of motoring to keep to passage timetables and it does limit the cruising grounds somewhat. It remains to be seen how far that will continue to be possible as the climate emergency continues to disrupt the weather patterns that have been stable for hundreds of years.

Of course a question is where that leaves everyone else who has neither £0.5 million to buy and the money to maintain a large catamaran.

Many will continue to follow the popular US market of slower, cheaper catamarans, many of them ex charter boats (such as Gone with the Wynns) and for the most part cruise in the Bahamas, Caribbean etc. With significant upgrades some will still cruise the world but for the most part need to make careful downwind passages and expect to motor or motor sail a lot.

We believe that another option, for years popular among those without lots of money, is for a well found older monohull. These can come from an era when you had neither the weather information nor the speed to route around storms, so they needed to be able to cope. With modern improvements such as Jordan Series Drogues for survival in the worst storms and better weather information they provide a more cost effective option and one that should allow cruising to continue as the weather becomes ever more unpredictable.

As the older systems such as diesel engines on these boats fail, sustainable conversions will become more common – as we see on Sailing Uma, Beau and Brandy, Spoondrifters, Learning the Lines and so on. They don’t get the publicity because there is not the same amount of money to be made from them, by the industry. They are not aimed at the wealthy wanting luxury. However, as an option to be able to go cruising in the face of climate change and be part of the solution rather than the problem they are a great option (the only option other than a DIY build?)

Avoiding engineering calculation paralysis

Two recent examples have in equal measures frustrated and amused me.

In their plans for Ruby Rose 2 Nick and Terysa have oodles of calculations but they appear to be aimed at justifying fitting large diesel engines because an all electric boat isn’t possible. They seem to have totally missed what was shown to be possible in their interview with Dan and Kika from Sailing Uma.

Then there is the subscription website “Attainable Adventure Cruising, The Offshore Voyaging Reference Site” with an article in the last week “Induction Cooking For Boats—Part 1, Is It Practical?” where I joined a discussion coming from our very different approach.

Both these present a numbers based “engineering” approach to decision making about the “practicalities” of moving away from fossil fuels. Sadly due to the initial assumptions the approach almost always leads to the conclusion that renewable energy sources cannot provide enough power for either propulsion or cooking.

The approach rejects working examples because they don’t present numbers in an “acceptable” way.

Our problem with this approach is that it is simply too easy to make assumptions about what is needed and the conclusion depends far more on the assumptions than on the calculations. In both these cases the assumptions are based on the expectations and lifestyle of a couple.

Ruby Rose have assumptions about never compromising on a luxury lifestyle with every modern convenience.

John and Phyllis have decades of experience cruising in high latitudes and strong views on what is safe and seaworthy. They have a stated goal of not considering anything that has not got a 10 year history of reliability.

Both these approaches are flawed if the goal is sustainability (or if budget constraints are tight). So if your assumptions are that you need to motor for an hour at full speed, and 500 miles at cruising speed, cook for a couple of hours every day, run a water maker, washing machine, multiple fridges and freezers, electric auto pilot, video editing laptops every day then you are going to conclude that renewable energy sources can’t cope.

Cynically if you control the list of things that you want to run all the time or anytime regardless of the conditions then you can guarantee that you will never be able to manage with renewable resources (at least until the last oil well has run dry and the Netherlands has disappeared under the sea).

Yet there is another way. One that we find most often from people with limited resources.

Embrace the limitations

Or start at the other end. Start with the resources that are possible.

  • What battery bank capacity can I afford?
  • What size battery bank can I fit (size and weight)
  • How many solar panels can I fit (and afford)?
  • Is wind generation going to fit my boat, my budget, my geography?
  • Is water power generation either from regen on an electric motor or something like Watt and Sea going to work (how much time sailing at suitable speeds)

These provide the constraints. Then sustainability becomes how you live within the constraints. There are plenty of options.

  • A vegetarian or vegan diet (as recommended as a key way of reducing our carbon footprint) can reduce the cooking energy significantly (no a roast chicken cooked for several hours is not required every week, if you want it then save your energy up first, or use a solar oven)
  • Set your passage plans according to the energy you have, probably slower (but then the whole point of sailing is surely to sail)
  • Set your cruising ground according to the season and energy available and required (so you probably can’t sail sustainably into an Arctic winter which is just a constraint, like the ones the majority of people live with all the time)
  • Have food available that doesn’t need to be cooked if you are short of energy (Huel and the like)
  • Plan to use appliances when you have the energy, keep the ones that have to be on to a minimum (eg freezers, fridges, autopilots).
  • Embrace the constraints. Do you really have to be able to do the washing, make water and cook for 2 hours on the same cloudy day – if yes then why?
  • To be honest the list is endless, we have gone in just a few years from it being normal to only use an engine in harbours to expecting to motor constantly for days at a time. From no refrigeration and basic hobs to dishwashers and ovens and drinks coolers in the cockpit.

The argument that it isn’t possible to live within the constraints of renewable energy is disproved by history. It is disproved by the examples already documenting their experiences eg Sailing Uma; and Beau and Brandy.

The challenge is to our assumptions, our privilege, our expectations of luxury. The opportunity is to open ourselves to the impact our lives have on others and to stop seeing ourselves as deserving something that our actions deny for others both now and in the future.

Into 2nd wave lockdowns

So a quick update on where we are at. The situation for Manchester is still chaos without agreement between the national and local governments regarding the level of lockdown we should be in. However, we are expecting to be more restricted soon (bearing in mind that Manchester has had it’d own lockdown for months anyway). As for travelling to Wales it is hard to find clear guidance as to whether the Welsh government have now made it illegal to travel from either tier 2 (High) or 3 (Very High). We took the view that it would have been wrong to go on Thursday when a ban was expected from 6pm on Friday (still unclear if that has happened). There now seems to be an expectation that a Welsh “Circuit Break” ban for a few weeks will be announced in the morning. We are working on the assumption that we might not be able to get to the boat again this year.

Fortunately we left her in good shape, the most watertight yet. So we are not worried about any problems on board.

We have some jobs we can do at home, while many of these are not urgent as far as launching is concerned they will at least allow us to feel we are making some progress while we can’t get to the boat.

Propeller Shaft: I wrote about the pitting issues in my last post. As none of the pitting is where bearings or seals go we decided to try to tackle it. Where there is pitting which is probably caused by electrical currents – either through poor earthing (electrolytic) or by currents between dissimilar metals (galvanic) – we are going to remove it. Pitting encourages more corrosion. The best way to avoid corrosion in stainless steel is a bright mirror polish and to have not used any other metals (eg saws or files) to achieve it.

So I have started removing the pitting using the angle grinder with a flap sanding disk. None of it is deeper than about 1mm. So far I’ve done about half of it (starting with the worst bits).

Once I have used the 80grit flap sanding disk to remove the pitting the shaft is no longer perfectly round and is definitely not smooth or polished. So I have 50m of a 25mm wide strip of 80 grit Emery Cloth. Using a strip of this wrapped around the shaft it should be possible to get it pretty smooth and round. I then have finer grades to remove the scratches before using a paste with a cloth to polish it as smooth as possible.

That should keep me busy for hours. A new propeller shaft would be a simpler solution but this should be perfectly serviceable for a few more years and saves waste.

Motor Mount brackets: I have the 4 angle brackets that will be bolted to the original engine bearers and which the flexible mounts will be bolted to. Just got another 10 or more holes to drill in them (10mm). That will leave only the 4 holes in the motor frame for the flexible mounts (not quite sure what size they are and the position isn’t finalised yet).

Domestic Battery Box: I’ve got to make some cut-outs in the timber for the nuts where the leads bolt to the busbar so that the busbars can be fitted. I can also make a lid (and adjust the design for a new expectation that the batteries will be lowered into it via opening the cockpit floor).

Motor Throttle Our motor throttle has a 6mm square shaft and I need to make or find a control lever for it. Trying to find something that doesn’t cost much, is reliable and doesn’t look clunky.

Motor Controller Heatsink: I want to get a really big and effective (and cheap) heatsink for the controller (because apparently they get really hot). My idea is so mount this through the (to be built) bulkhead between the motor compartment and the cockpit locker. This way the heat gets put into the cockpit locker while the controller is away from it in the motor compartment.

Dinghy: Jane has nearly finished the cover for the dinghy. I need to get and fit removable launching wheels to get it over the mixture of rocks and shingle where we will launch it.

Solar Panel mounts: I should be able to make everything I need to mount the solar panels to to the boat both on the wheelhouse roof and at the guardrails.

Propeller: We have the propeller at home and it still needs a lot of cleaning. One day money permitting we will replace it with a Bruntons Autoprop Ecostar, until then cleaning it is.

Emergency Steering: The two part emergency tiller (if the wheel steering breaks) has probably been in storage under the after cabin bunk for the whole life of the boat. There has been a little corrosion which means the parts no longer fit together. So we will fix this.

Consumer Unit mount: We now have a consumer unit for the mains power. We have a place for it which will allow us to access the trip switches. It is quite large as we have one switch for each of the 13 sockets we will have around the boat, we are running a separate wire to each rather than a ring main. However, it will need to be lowered for full access so I’m making a wooden frame for it to slide up and down in.

Navigation and control systems: I have plenty of fun planned getting Raspberry Pi computers sorted to run the chart plotter and other navigation software. I want them to interface with all our instruments, with the battery management systems, the solar charge controllers etc. We will have an indoor and an outdoor Pi so we can see everything when steering or when below. The indoor one will also be our entertainment centre and office computer.

Propeller shaft pitting

So I’ve started the cleaning up of our propeller shaft. It had some brown gunk (like a dried muddy residue from corrosion) but no rust of itself.

However, in a number of places it has uncovered pitting. This seems to be concentrated on the bits that were just outside the various bearings etc. So the taper for the propeller itself is clean. The section where the cutlass bearing goes is clean although it looks as if the pitting at the inboard might have been made worse by a worn cutlass bearing causing some damage. There is also pitting around where the stuffing box was, fortunately the dripless seal will be in one of the cleanest sections.

So far I’ve used a strip of 150 grit emery cloth. I’ve got 3 other grades upto 400 grit, so we will go over it with all of them. In all cases we are sanding round the shaft not up and down the length which is apparently important for the seal.

Just wondering whether we need to do anything about the pitting. Chemicals? More sanding? Or what?

Also what caused it. Was it the poor grounding causing galvanic/electrolytic corrosion? Is it something to do with the bearing?

Anyway here is a gallery of pictures of the pitting. What do you think?

Friday progress 28

Today, thanks to help from one of our sons, we got the motor in its frame onto the boat and into the motor compartment.

That means we have been able to measure all the holes for the motor mounts and the holes to fit them to the brackets and the holes in the brackets to fasten them into the boat.

We managed to drill 6 1/2 holes of 20 before the drill bits gave up. We can now finish the rest at home.

Then we took out the bulkhead between the aft cabin and the motor compartment (to make the cabin larger and improve access to the drive train). The new bulkhead will be lined up with the support for the Aquadrive.

We also removed the door to the aft cabin. That removes an awkward trip hazard and will allow us to fit a wider door, easier for my shoulders and also to get the toilet through.

Motor ready for installation

At last the electric motor is in it’s frame with reduction gear and extra bearing to support the coupling and Aquadrive connection.

Just got to fit the motor mounts into the boat and drill the holes in the frame for them.

That does mean 20 more holes in 6mm stainless steel. Best not to think about that too much.

Also got to lift this beast onto the boat. Best not to worry too much about that either.